An Update on Science Studies for the Electron Ion Collider

Thomas Ullrich
July 8, 2008
RHIC S&T Review 7-9 July 2008

EIC: Study of Glue That Binds Us All

$$L_{QCD} = \bar{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g(\bar{q}\gamma^{\mu}T_{a}q)A^{a}_{\mu} - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$$

Gluons

- Self-interacting force carries
- Determine essential features of QCD
- Dominate structure of QCD vacuum
- Responsible for >95% if visible mass in universe

Despite this dominance, the properties of gluons in matter remain largely unexplored

⇒ Electron Ion Collider = EIC

How Glue is Measured (so far)

$$\frac{d^2 \sigma^{ep \to eX}}{dx dQ^2} = \frac{4\pi \alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right]$$

Scaling violation: $dF_2/dlnQ^2$ and linear DGLAP Evolution $\Rightarrow G(x,Q^2)$

How Glue is Measured (so far)

$$\frac{d^2 \sigma^{ep \to eX}}{dx dQ^2} = \frac{4\pi \alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right]$$

Scaling violation: $dF_2/dlnQ^2$ and linear DGLAP Evolution $\Rightarrow G(x,Q^2)$

What Do We Know About Glue?

Linear DGLAP evolution

negative $G(x,Q^2)$ at low Q^2 ? built in high energy "catastrophe"

xG rapid rise violates unitary bound
 xG must saturate ⇒ new approach

BK/JIMWLK: non-linear effects

- ⇒ saturation
 - characterized by Q_s(x,A)
 - believed to have properties of a Color Glass Condensate

The Science Program of an EIC

EIC research will penetrate some of the most profound mysteries of questions of 21st century physics

- Explore new QCD frontier: strong color fields in nuclei
 - ▶ How do the gluons contribute to the structure of the nucleus?
 - What are the properties of high density gluon matter?
 - How do fast quarks or gluons interact as they traverse nuclear matter?
- Precisely image sea-quarks and gluons in the nucleon
 - How do the gluons and sea-quarks contribute to the spin structure of the nucleon?
 - What is the spatial distribution of the gluons and sea quarks in the nucleon?
 - How do hadronic final-states form in QCD?

EIC WG Organization Chart

Overall: 96+ Scientists, 28 Institutions, 9 countries

EICC Steering Committee

- Antje Bruell, Jlab
- Abhay Deshpande*, Stony Brook, RBRC
- Rolf Ent, Jlab
- Charles Hyde, ODU/UBP, France
- Peter Jacobs, LBL
- Richard Milner*, MIT
- Thomas Ulrich, BNL
- Raju Venugopalan, BNL
- Werner Vogelsang, BNL
- * contact persons

International Advisory Committee

- Jochen Bartels (DESY)
- Allen Caldwell (MPI, Munich)
- Albert De Roeck (CERN)
- Walter Henning (ANL)
- Dave Hertzog (UIUC)
- Xiangdong Ji (U. Maryland)
- Robert Klanner (U. Hamburg)
- Katsunobu Oide (KEK)
- Naohito Saito (KEK)
- Uli Wienands (SLAC)

Working Groups:

ep Physics

- Antje Bruell, JLAB
- Ernst Sichterman, LBL
- Werner Vogelsang, BNL
- Christian Weiss, JLAB

eA Physics

- Vadim Guzey, JLAB
- Dave Morrison, BNL
- Thomas Ullrich, BNL
- Raju Venugopalan, BNL

Detector

- Elke Aschenauer, JLAB
- Edward Kinney, Colorado
- Andy Miller, TRIUMF
- Bernd Surrow, MIT

Electron Beam Polarimetry

• Wolfgang Lorenzon, Michigan

2 collaboration meetings/year; steering committee meets once a month; regular WG meetings

EIC in 2007 - a good year

Documenting the Science Case

- The Electron Ion Collider (EIC)
 White Paper
- The GPD/DVCS White Paper
- Position Paper: e+A Physics at an Electron Ion Collider

NSAC Long Range Plan 2007

"An Electron-Ion Collider (EIC) with polarized beams has been embraced by the U.S. nuclear science community as embodying the vision for reaching the next QCD frontier."

NSAC Recommendation for EIC:

"We recommend the allocation of resources to develop accelerator and detector technology necessary to lay the foundation for a polarized Electron-Ion Collider."

Current Science Studies: e+A

Key Physics Studies and their implications on detector and machine requirements

The Nuclear Oomph

physics reach into saturation regime ⇒ machine

Momentum Distribution of Gluons $G(x,Q^2)$:

- via scaling violation of F₂
- directly via F_L ($\sim G(x, Q^2)$)
- through 2+1 jets
- through diffractive events $(\sim G(x,Q^2)^2)$

Diffractive Physics

- Tagging diffractive events in e+A ⇒ feasibility & detector
- Measuring diffractive events ⇒ detector

Nuclear Oomph

HERA e+p:

Despite energy and low-x reach higher than EIC: no clear evidence for non-linear QCD effects (saturation phenomena)

e+A @ EIC:

Probes interact over distances $L\sim 1/(2m_Nx)$ For L > 2 RA $\sim A^{1/3}$ probe interacts coherently with all nucleons

Nuclear Enhancement (Oomph): $(Q_s^A)^2 \approx cQ_0^2 \left(\frac{A}{x}\right)^{1/3}$

Enhancement of Q_s with $A \Rightarrow$ non-linear QCD regime reached at significantly larger x (lower \sqrt{s}) in A than in proton e+A physics program relies on this nuclear enhancement

Recent Studies on Nuclear Enhancement

Kowalski, Lappi and Venugopalan, PRL 100, 022303 (2008)

Implication for Machine Requirements

EIC Beam Energy (GeV)	√s (GeV)	low-x reach compared to HERA (e+p equivalent)
2+100	28	4
10+100	63	18
20+100	89	36
20+130	102	50
30+130	125	71

Despite advanced theory:

- We do not know for sure how far HERA was away from the saturation physics regime
- We have to reach far into this regime and we need a safety margin:
- √s ≥ 63 GeV

Key Measurement: F_2 , $F_L \Rightarrow G(x,Q^2)$

Simulations to demonstrate the quality of EIC measurements

Folded with EIC acceptance

 $F_L \sim \alpha_s G(x, Q^2)$ requires \sqrt{s} scan, $Q^2/xs = y$

Assume:

L = $3.8 \cdot 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ (100x Hera) T = 10 weeks duty cycle: 50% L ~ 1/A (approx) Ldt = 11 fb⁻¹

Plots above:

 $\int \mathcal{L}dt = 4/A \text{ fb}^{-1} (10+100) \text{ GeV}$ = 4/A fb⁻¹ (10+50) GeV = 2/A fb⁻¹ (5+50) GeV statistical error only

G(x,Q²) and Systematic Errors

Systematic Uncertainties

- While statistical errors can be rather well evaluated (acceptance, kinematics, L) the systematic uncertainties are the big unknown
- Hard to estimate: need at least a rough detector design

This study:

1% energy-to-energy normalization (typical HERA values)

Systematic uncertainties exceed statistical errors

 We probably can do better (conceptual design!)

Current Focus: Diffractive Events

Surprising Discovery at HERA ep: 15% of all e+p events are hard diffractive (p intact)

Diffractive cross-section $\sigma_{diff}/\sigma_{tot}$ in e+A: 25-40%? Look inside the "Pomeron": diffractive structure functions F₂D, F_LD Diffractive vector meson production $\sim G(x,Q^2)^2$

"Footprint" of Diffraction

- 1. Outgoing proton with large $x_L = E_p'/E_p \approx 1$
 - typical $t = (p-p')^2$ smaller than 1 GeV², ⟨*t*⟩≈0.15 GeV²
- 2. Produced system X must have small mass w.r.t γ^* p center-of-mass (W)
- 3. Rapidity gap between *p* and *X*
 - Δη≈In (1/x_{IP})

Identifying Diffractive Events

Large rapidity gap method

▶ no information on t (limited X_{IP} reach)

Proton Spectrometer

- Identify leading proton
 - ▶ low t ⇒ outgoing p scattered at low angles close to the beam axis ($\theta \le 1$ mrad)
 - Roman pots w Si-position detectors + beam optics
 - ▶ RHIC experience from pp2pp program

Challenge: Nuclei break up easily (compared to p)

Diffractive eA event

A → fragments (breakup)

 $A \rightarrow n + A-1$ (Dipole Resonance)

A stays intact and $\theta > 0.1$ mrad (P=?)

challenging!
possible ?!
best case

Current efforts: Estimate: P_{breakup}, P_{non-breakup}, P_{n-emission}
A-Spectrometer concept (beamline integration)
Experience at RHIC from UPC program

Current Science Studies: e+p

While there's lots of interesting e+p physics that does not need polarized electron and protons, it's the polarized e+p program that constitutes a new energy frontier

Inclusive physics

unpolarized + polarized structure functions

Direct measurements of polarized gluon distribution ΔG

current studies: via charm production

Semi-inclusive physics

- current quark fragmentation and flavor separation
- p_T dependent parton distributions
- Sivers and Collins functions

Exclusive processes and diffraction

- DVCS + meson production (pseudoscalar and vector)
- 3 dimensional image of the proton & orbital momentum
- General Parton Distributions (GPD)

Spin structure functions: g₁(x,Q²)

x,Q² reach appears sufficient at \sqrt{s} =100 GeV to distinguish models for g₁ in a crucial x range as long as Q² < 12 GeV²

Measurement of g_1 at very small x could settle the ΔG problem.

20/30+325 GeV (eRHIC) option gets you up to $Q^2=40$ GeV² at $x=10^{-3}$

Inclusive Scattering

 $O^2 = 2.5 \text{ GeV}^2$

0.010

 $\mathbf{x}(\Delta \mathbf{u} + \Delta \mathbf{u})$

Impact on EIC on the uncertainties for NLO polarized PDFs

 $q(x, Q^2)$, $G(x,Q^2)$ are (anti) quark and gluon polarized densities

(LSS'06 derived from recent CLAS and Compass data)

Exclusive Processes in *e*+*p*

- Essential part of the EIC program
 - General Parton Distributions (GPD)
 - "Quark/gluon imaging" of nucleon
- Challenging measurement
 - ▶ High luminosity L ~ 10³⁴ cm⁻² s⁻¹
 - Detectors: coverage, resolution, particle ID
- Lessons from MC simulations
 - ▶ e+p → e' π + n, π ⁰ p, K Λ

A. Bruell, T. Horn, G. Huber, C. Weiss (2008)

Summary

Ongoing physics studies

- Current focus e+A
 - diffractive physics & detector requirements
 - next: jet physics
- Current focus e+p
 - exclusive processes (luminosity requirements)
 - various processes: kinematics & detector requirements

All studies & efforts still conducted by few enthusiast

- Relatively broad interest but many are reluctant to get further involved at this point
- Most efforts centered around labs (BNL, JLAB, LBNL)
- Need to strengthen the user base that is willing to get their hand dirty

EIC Roadmap

NSAC Long Range Plan 2007

Recommendation: \$6M/year for 5 years for machine and detector R&D

Goal for Next Long Range Plan ~2012

▶ High-level (top) recommendation for construction

EIC Roadmap (Technology Driven)

Finalize Detector Requirements from Physics	2008
Revised/Initial Cost Estimates for eRHIC/ELIC	2008
Investigate Potential Cost Reductions	2009
Establish process for EIC design decision	2010
 Conceptual detector designs 	2010
▶ R&D to guide EIC design decision	2011
▶ EIC design decision	2011
▶ MOU's with foreign countries?	2012

Continuous effort: Strengthening the science case